Single source precursor route to iron sulfide nanomaterials for energy storage
نویسندگان
چکیده
منابع مشابه
Nanomaterials for energy conversion and storage.
Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport properties, altered physical properties, and confinement effects resulting from the nanoscale dimensions, and have been extensively studied for energy-related applications such as solar cells, catalysts, thermoelectrics, lithium ion batteries, supercapacitors, and hydrogen storage systems. T...
متن کاملA Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage
Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high-performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical vapor deposition products is developed as a general synthetic method to prepare a family of metal oxides [MxOy (M = Fe...
متن کاملNanomaterials for Electrochemical Energy Storage: the Good and the Bad.
A critical view on the outcome of research in nanomaterials for electrochemical energy storage devices (batteries and supercapacitors) is provided through selected examples. The nano- approach traces back to the early battery research and its benefits realized even before the nano- term was coined. It has enabled important progresses which have translated, for instance, in the possibility of us...
متن کاملCarbon nanomaterials for advanced energy conversion and storage.
It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g....
متن کاملDynamic random access memory devices based on bismuth sulfide nanoplates prepared from a single source precursor.
Semiconducting bismuth sulfide (Bi2S3) nanoplates with unique highly oriented {001} surfaces were prepared on a large scale using a novel organic precursor Bi(DTCA)3 (DTCA = carbazole-9-carbodithioic acid). The as-prepared Bi2S3 nanoplates were dispersed in dimethyl sulfoxide (DMSO) and spin-coated onto an indium tin oxide (ITO) coated glass substrate. With a simple ITO/Bi2S3/Al stacked structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Physics Letters
سال: 2020
ISSN: 0009-2614
DOI: 10.1016/j.cplett.2019.136993